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CHAPTER 1 

 

FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS 

 
 

1 Introduction 

1.1 Applications of ODEs - A Simple Example 

 

Physical Problem 

 

 Math Modeling 

 Solving the Math Problem 

 Interpretation of Its Physical Meaning 
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h(t)

h(t+t)

Falling Stone
Problem

 

 

F = ma = mg  where    a = g = acceleration of gravity 

  h(t+t)  h(t)  

 t 
     = v(t) or,  for t  0, 

  dh  
dt    =  v 

Since a = 
  dv  

dt    =   
  d2h  

 dt2 
  

we have 
  d2h  

dt2   = a  =  g    constant 

 

Math Model! 
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The above equation can be written as 

d
dt 








 
dh
dt    = g         

  Mathematical Modelling   

dh
dt   = g t  +  c1   or v  =  g t  +  c1 

And   h  =  
1

  2   g t2 + c1 t + c2 

I.C. (Initial Condition): 

h(0)  =  0   c2  =  0 

v(0)  =  0   c1  =  0 

Thus, we have h = 
1

  2   g t2 #  

 Solution of the Math Problem   

h = falling distance 
g = acceleration of gravity 

t = time 

 Interpretation of Physical Meaning   
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A Physical Problem   

    Mathematical Model    

      Solution of the Mathematical Problem  

      Interpretation in Terms of Its Physical Meaning 
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1.2 Some Definitions 

(1) Ordinary Differential Equation - only one independent 
variable 

y = y(x) 

y:  dependent variable; x: independent variable  

f(y, x, y', y", ... )  =  0 

where  y'  =  
  dy  

dx     ,   y"  =  
  d2y  

dx2   

Partial Differential Equation - more than one independent 
variable! 

2 2 2

2 2

( , , )

, , , , , , , , 0

where

       dependent vatiable

      ,    independent variables

x t

x t
x t x t x t

x t

 

    






     
  

      




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(2) Order: the highest derivative of y with respect to x in the 
equation 

 y" + 4y' + 5y  =  0 2nd order 

 y'  y cosx  =  0 1st order 

 (y(4))3/5  2y"  =  cosx 4th order 
 
A first order ODE can be written either in an implicit form or 
an explicit form: 
 

( , , ) 0   or   ( , )F x y y y f x y    
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(3) Solution:    

  A solution of a given 1st-order differential equation 
on some open interval a x b  is a function ( )y h x  
that has a derivative ( )y h x   and satisfies this 
equation for all x in that interval; that is, the equation 
becomes an identity if we replace the unknown 
function y by h and y’ by h’. 

 

  A solution of an nth–order differential equation is a 
function that is n times differentiable and that satisfies 
the differential equation. 
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(a)  General solution:  contains arbitrary constants, e.g.,  

 
  d2h  

dt2   = g 

 h(t)  =  
1

  2   g t2 + c1 t + c2  

where c1 and c2 are constants and are arbitrary. 

 

(b) Particular solution: no arbitrary constants 

 
  d2h  

dt2   = g    

with  
  dh  

dt  (t=0)  = 0,  h(t=0) = 0 (initial conditions) 

 h(t)  =  
1

  2   g t2  
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(c) Trivial solution: If y = 0 is a solution to a differential equation 
on an interval I, then y = 0 is called the 
trivial solution to that differential equation 
on I.  e.g.,  

 
  dy  

dx   = 3y  

 y = 0  trivial solution 

 y = c e3x   general solution 

 

(d) Explicit solution:  y = f(x) 

e.g., y = c e3x is an explicit solution of y' = 3y 

 

(e) Implicit solution:  f(x, y) = 0 

e.g.,  x2 + y2  1 = 0 is an implicit solution of   y y' = – x. 
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(f) Singular solution: a solution can't be obtained from the general 
solution 

e.g., y'2  x y' + y = 0 

 y = c x  c2  general solution 

 y = x2/4  singular solution 
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(4) Verification of Solution 
 

[Example] The solution of 2xy y   is 2y x .   

Verify: 2(2 ) 2 2x x x y  . 
 
[Example] The solution of yy x    on the interval 1 1x     is 

2 2 1 0  ( 0)x y y    .  
Verify:  2 2 0x yy yy x      . 

 
 
 There are equations that do not have solutions at all. For 

example,  
2

1y    does not have a real-valued solution. 

 
 There are equations that do not have general solutions.  For 

example, 0y y   has only a trivial solution 0y  . 
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2 Separable Differential Equations 

 

2.1 Separation of Variables  

If the differential equation can be reduced to the form 
 

 

f x
y

g y
   

 g(y) y'  =  f(x) 

or, since y'  =  
  dy  

dx   

 g(y) dy  =  f(x) dx 

then we have a separable equation and the general solution can 
be obtained by integration on both sides: 

 


 
 g(y)  dy =  

 

 
 f(x)  dx + c 

where c is an arbitrary constant. 
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[Example]  
  dy  
  dx    = x 1  y2  

[Solution] 
dy

1  y2
  = x dx 

 




 

 
dy

 1  y2  
    = 

 
 xdx   + c 

or sin–1y  =  
x2

  2    +  c implicit solution 

or y  =  sin ( 
x2

  2    +  c  ) explicit solution 
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 [Example]  

y ky   

[Solution]  

   

   

           ln | |

0 ln ln /

0 ln ln( ) / /

| |           

where

0

          0

0 0

c kx kx

c

c

dy
kdx y kx c

y

y y y y y

y y y y y y y

y e e y ce

e y

c e y

y

   

      
 

          

  

 


  
 

 

Trivial solution! 
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[Example] y' = – 2 x y 

[Solution] 
  dy  
  dx    =  2 x y    →   

  dy  
 y   =  2x dx 

∴         ln |y|  =  – x2 + c 

or |y|  =  exp{ -x2 + c }      or     y  =  c' e–x2
 

Note that if c' = 0, we have a trivial solution y = 0. 
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[Example]  

/              (1) 1y y x y     

[Solution]  

            ln | | ln | |       

where

, 0   or   , 0
          

0, 0   or   0, 0 

From IC:  (1) 1                   1

c

c

dy dx c
y x c y

y x x

e x y x y
c

e x y x y

y c xy

      

  
 

    

   
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[Exercises]   Please solve the following equations 

 (i) ex-y 
dy
 dx    + 1 = 0 

 (ii) y’  =  2 x y ; y(0)  =  1 

 (iii) y'  =  
 xy + 3x - y - 3 

 xy - 2x + 4y - 8   

 

2.2 Initial Value Problems 

 

Ordinary Differential Equation + Initial Condition(s) 

0 0( , )           ( )y f x y y x y  
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[Example] ( x2 +1 ) y' + ( y2 +1 )  =  0 y(0)  =  1 

[Solution] 
 dy 

  y2 + 1  
  =    

 dx 

  x2 + 1  
  

 tan–1y =  – tan–1x + c 

or tan–1x + tan–1y  =  c 

 tan(tan–1x + tan–1y)  =  tan c 

or 
x + y

 1  xy 
  = tan c  =  c'  general solution 

Since y(0)  =  1,  we have tan c  =  1 

 
x + y

 1  xy 
  = 1 

or y  =  
1  x

 1 + x    #  particular solution 

Note that in general there is no arbitrary constant for initial value 
problems. 
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3 Equations Reducible to Separable Forms  
 
 

(1) y'  =  f(ax + by + c) where a, b and c are constants 

Let u = ax + by + c 

 
du
dx   = a + b 

dy
dx   = a + b f(u) 

 




 

 

 
du

a + b f(u)    =    dx  + c 
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[Example] y' = (x + y)2+ a2  a  =  constant 

Let u = x + y      
2 2y u a    

 
du
dx  = 1 + 

dy
dx            

du
dx   = 1+u2 + a2 


du

 u2 + a2 + 1 
   =   dx    and 





 

 

 
du

 u2 + a2 + 1 
   =   x + c 

 
1

 1+a2 
   tan–1 

u

 1+a2 
   =   x + c 

u = 1+a2  tan( x 1+a2  + c')         where   
21c c a    

 y = 1+a2  tan( x 1+a2  + c')  x # 
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(2) y'  =  f(y/x) 

Let  y/x = u or y = x u 

 
dy
dx  = x 

du

dx
  + u = f(u) 

 
du

 f(u)  u 
  =  

dx
 x   

 




 

 

 
du

 f(u)  u 
    = ln |x| + c 

or x  =  c1 exp 













 




 

 

 
du

 f(u)  u 
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[Example] y' =  
y  kx

 x + ky    where   k = constant 

Let  y/x = u  or y = x u 

 y'  =  u + x u' 

 u + x u' = 
u  k

 1 + ku   ;   or  x u'  =  - 
 k (1 + u2) 

 1 + ku   

 








  
1

 k( 1 + u2) 
 + 

 u 

1 + u2     du + 
dx
 x   =  0 

 
 1 
k   tan–1 u + ln 1+u2  + ln |x| = c 

or 
1
k  tan–1 

y
x   + ln x2+y2  =  c # 
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 [Exercises] Please solve the following equations: 

 (i) y'  =  
 xy + 2y2 

x2   

 (ii) y'  =  
 y - x 
 y + x   

 (iii) y'  =  
   2 x-1 y  -  3   

   2 y-1 x  -  3   
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(3) y'  =  f 










 
 Ax + By + C 

ax + by + c   , where A, B, C, a, b, c, are constants 

 

a. C = c = 0 

 y'  =  f 










 
 Ax + By 
 ax + by     = f 











 
A + B(y/x) 
 a + b(y/x)    = g(y/x) 

 Same as Case (2) 

b. C  0  and/or  c  0 

(i)  A b  B a  0 

(ii)  A b  B a = 0 or 

a b

A B

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b. C  0 and/or  c  0:   (i)  A b  B a  0 

Let  x = t + h 

 y = z + d  

where h and d are constants to be determined later 

dy dz At Bz Ah Bd C
f

dx dt at bz ah bd c

    
   

    
 

We may take appropriate h and d such that 

 




 

 Ah + Bd + C = 0
 

 ah + bd + c = 0
  

then, the differential equation reduces to 

 
dz
dt   = f 











 
 At + Bz 
 at + bz    

 Same as Case (3)a or Case (2) 
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b. C  0 and/or  c  0:  (ii)  A b  B a = 0 or 
a b

A B
  

 

(a) a =  b  =  0 

y'  =  f 








 
 Ax + By + C 

c    = F (px + qy+r) 

 Same as Case (1) 

 

(b) Set  

A x + B y + C  =  u or  a x + b y + c  =  u 

 Same as Case (1) 
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[Example] (7y  3x + 3) y' + 3y  7x + 7 =  0 

[Solution]   The above ODE can be written as 

 y'  =  
 7x  3y  7 

   3x + 7y + 3  
  

Check A b  B a = 77  (3)  (3)  0 

Let x = t + h and y = z + d and take h and d such that 

 




 

Ah + Bd + C = 0
 

ah + bd + c = 0
             or 





 

7h  3d  7 = 0
 

3h + 7d + 3 = 0 
  

 d = 0  h = 1         and    t  =  x  1 z  =  y 

 
 dy 
dx    =   

 dz 
dt    =   

7(x  1)  3y

 3(x  1) + 7y 
    =    

 7 t  3 z 

  3 t + 7 z  
  

thus 
 dz 
dt   =    

 7t  3z 
  –3t + 7z     Case (2) 

Ans:  ( y + x  1 )5 ( y  x + 1 )2  =  C  Please check it !! 
 # 
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[Example] (y  x + 5 ) y'  =  y  x + 1 

[Solution]  A b  B a =0 

Let  u = y  x + 1   
4

u
y

u
 


 

 
du
dx  = 

dy
dx   – 1 = y' 1       y'  =  1 + u' 

 (u + 4) (1 + u')  = u         or    ( u + 4 ) u'  =  –4 




 

 
 (u + 4)  du =  

 

 
 4  dx + c 

 
 1 
2   u2 + 4u + 4x = c      i.e., (y  x)2+ 10 y  2 x  =  c' 

[Exercise]    Solve  y' =  
  1  -  2 y  -  4 x  
  1  +  y  +  2 x    
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4 Modeling 

 

 

Physical Problems

Mathematical Models

Modeling
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[Example]  Time required for draining a tank  Torricelli's Law 

 

 
Outlet

h(t)

 

 

 V = A v t 

where V  =  volume of water flows out during t 

 A = cross-sectional area of the outlet = 0.7854 cm2 
 v = velocity of the out-flowing water 

Torricelli's law states that 

 v = 0.6 2gh  

where g  = acceleration of gravity  =  980 cm/sec2 
 h = height of water above the outlet 
 

Note that V must equal to change of the volumes of water in the tank, i.e., 
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 V =  B h (Mass Balance) 

where B   =  cross-sectional area of the tank  =  7854 cm2 

 h = decrease of the height h(y) of the water 

i.e., A v t = – B h 

or 
h

t
   =     

  Av  
B    =     

 A 0.6 2gh 
B   

Letting t  0, we obtain the differential equation 

 
dh
dt     =    

 A 0.6 2gh 
B   =    0.00266 h  

Initially, the height of the water is 150 cm, i.e., 

 h(0)  =  150 cm  Initial Condition 

we then have 

 h(t)  =  (12.25  0.00133 t)2 
# 
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5 Exact Differential Equations 

5.1 Total Differential (Exact Differential) 

The total differential du of a function of two variables u(x,y) is defined 
by 

 du =  
  u  

x
  dx +  

  u  

y
  dy 

e.g., if u(x,y)  =  x y,  then the total differential of u is 

 du =  y dx + x dy 

Suppose that we take the total differential of the equation u(x,y)  =  c, 
then 

 du =  
  u  

x
 dx + 

  u  

y
 dy  =  0 

e.g., the total differential of the equation 

 x y  =  c 

is y dx + x dy  =  0    or y'  =  – y/x      (ODE!) 
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Reversing the situation, suppose that we start with the differential 
equation 

 M(x,y) dx + N(x,y) dy  =  0  

If we can find a function u(x,y) such that 

 
  u  

x
   = M(x,y)  

  u  

y
   =  N(x,y) 

then the differential equation becomes 

 
  u  

x
  dx +  

  u  

y
  dy  =  0 

which has the general solution 

 u(x,y)  =  c 

In this case, the differential equation 

 M(x,y) dx + N(x,y) dy  =  0         
 

 
 

,
or  ,

,

M x ydy
f x y

dx N x y

 
    

 
 

is called an exact differential equation. 
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5.2 Condition for Exact Differential 

If  M(x,y) dx + N(x,y) dy  =  0  is an exact differential equation, 
then 

 M(x,y)  =  
  u  

x
  ; N(x,y)  =  

  u  

y
  

But 
  M(x,y)  

y
   = 



 y 
 
 u 

x
   = 



 x 
 
 u 

y
   = 

  N(x,y)  

x
  

Thus,    
 M 

y
  =  

 N 

x
     

is the necessary and sufficient condition for Mdx + Ndy to be a 
total differential. 
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5.3 Solution for Exact Differential Equations 

Method I 

Since 
  u  

x
   = M(x,y) 

the solution has the following form 

 u = 

  

 M dx   + k(y)   = c 

To determine k(y), we take 
 u 

y
 of the above equation and compare the 

result with 

 
  u  

y
  = N(x,y) 

Method II 

( )

( , )

u Ndy l x c

u
M x y

x

  







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[Example]         Solve     x y' + y + 4 = 0 

[Solution] (y + 4) dx + x dy = 0 

or M  =  y + 4 ; N  =  x 

Check the exactness by 

 
  M  

y
   = 1 =   

  N  

x
    Exact Differential 

Solve for u = 

  

 M dx   + k(y) = 

 

 
 (y + 4) dx  + k(y) = x y + 4x + k(y) 

But 
u

y
  = N(x,y)           or          x + k'(y)  =  x 

∴ k'(y)  =  0 or k(y)  =  c*. Thus, we have the solution u = c. 

 ∴     x y + 4x + c*  =  c      or x y + 4x  =  c' # 

Differentiate wrt x, i.e. 
4

4 0 
du y M

y xy y
dx x N


           
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[Example] (1  sin x tan y) dx + (cos x sec2 y) dy = 0 

[Solution]  M = 1  sin x tan y  

N = cos x sec2 y 

 
  M  

y
   =  sin x sec2 y =  

  N  

x
   Exact 

Differential  

The solution is 

 u = 

 

 
 M dx  + k(y) 

  =  (1  sin x tan y) dx  + k(y) = x + cos x tan y + k(y) 

 
u

y
   = N(x,y)   →  cos x sec2 y + k(y)'  =  cos x sec2 y 

 k'(y)  =  0 or k(y)  =  c* 

The solution u = c becomes:           x + cos x tan y = c' # 
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6 Integrating Factors   
 

A Simple Example: 

 

1
  y    dx + 2 x dy  =  0 

Since 2

1
2

M N

y y x

 
   

  , it is not exact!  

Multiply both sides of the above equation by F(x,y)=y/x 
(integrating factor), then 

 
1

2 0
y y

dx x dy
x y x

 
  

 
 

  dx  
x   + 2 y dy = 0 

Since 0
M N

y x

 
 

  , it is exact! 
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A differential equation which is not exact can be made exact by 

multiply it by a suitable function F(x,y) (  0).  This function is 
then called an integrating factor. 

 P(x,y) dx + Q(x,y) dy  =  0  not exact 

P Q

y x

 


 
 

 F(x,y) P(x,y) dx + F(x,y) Q(x,y) dy = 0  Exact 

In this case, we need to solve 



y
 (FP)  = 



x
 (FQ)  

which is a partial differential equation of F(x,y).  In general, it is 
difficult to determine an integrating factor from the above 
equation.  However, in some special cases, the integrating factor 
can be found as shown in the following special cases: 

 



1
st
-Order ODE - 40 

(i) If 

  








 
 P 

y
  

 Q 

x
   

 Q     = f(x), i.e., a function of x only, then F(x)=ef(x)dx is an 

integrating factor, which is also a function of x only. 

[Proof] 

Since the integrating factor satisfies the PDE 

 


 y 
 (FP)  = 



 x 
 (FQ)  

∴ F 
P

 y 
   +  P 

F

 y 
   =  F 

Q

 x 
   +  Q 

F

 x 
   or    F 









 
  P  

 y 
    

  Q  

 x 
    =  Q 

  F  

 x 
     P 

  F  

 y 
  

If we assume that the integrating factor F is function of x only, i.e., 

 F = F(x)  
  F  

 y 
   = 0 

i.e., F 








 
  P  

 y 
    

  Q  

 x 
    = Q 

  dF  
 dx   or 

  d lnF  
dx    =  

 








 
  P  

 y 
    

  Q  

 x 
  

Q  =f(x)  

The above equation can be solved if the right-hand-side is function of x only, i.e., 
 d lnF 

dx    = f(x) ,  and the solution is then the integrating factor 

F = ef(x)dx 
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(ii) If   

   










 
 P 

y
  

 Q 

x
   

 P     = f(y),  i.e., a function of y only, then e– f(y)dy 

is an integrating factor, which is also a function of y only. 

[Proof]:  Exercise! 

 

(iii) If   

   










 
 P 

y
    

 Q 

x
    

Q  P
   = f(x+y) = f(v), then ef(v)dv is an integrating 

factor, which is a function of x+y. 

 

(iv) If   

   










 
 P 

y
    

 Q 

x
    

Q y  P x
   = f(xy)  =  f(v), then ef(v)dv is an integrating 

factor, which is a function of xy. 
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 [Example] (4 x + 3 y2) dx + 2 x y dy = 0 

 P = 4 x + 3 y2   Q = 2 x y 

 
 P 

y
  = 6 y  2 y =  

 Q 

x
   not exact 

Check 

  










 
 P 

y
  

 Q 

x
   

 Q   = 
  6 y  2 y  

 2 x y    = 
2

  x     = f(x) 

Thus, the integrating factor F(x) is 

 F(x) = ef(x)dx   =  e




 

 

 
 2 
x  dx

  = x2 

Multiply F(x) on both sides of the differential equation, we have 

 (4 x3 + 3 x2 y2) dx + 2 x3 y dy = 0  Exact 

 x4+ x3 y2  =  c # 
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[Example] 2 cosh x cos y dx  sinh x sin y dy = 0 

 Note that  cosh x    
 ex + e-x 

2   

  sinh x    
 ex - e-x 

2   

 and d cosh x/dx =  sinh x 
  d sinh x/dx =  cosh x 

 P = 2 cosh x cos y  

Q = – sinh x sin y 

 
P

y
   = 2 cosh x sin y   cosh x sin y =  

Q

x
  

Check 

  










 
 P 

y
  

 Q 

x
   

 Q    =  
  2 cosh x sin y + cosh x sin y

  sinh x sin y 
    

  = 
cosh x
 sinh x   = f(x) 
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Thus, the integrating factor F(x) is 

 F(x) = ef(x)dx   =  e 




 

 

 
cosh x
 sinh x  dx

  = sinh x 

Multiply sinh x on both sides of the differential equation, we have 

 2 sinh x cosh x cos y dx  sinh2 x sin y dy = 0 

which can be solved by 

2

 ( ) 2sinh cosh cos  ( )

 sinh cos  ( )   

u FPdx k y x x y dx k y

x y k y

   

 

 
 

and 
u

 y 
   = F Q    sinh2x sin y  +  k'(y)  =  - sinh2 x sin y 

 0   k      k(y)  =  constant 

Thus the solution to the above ODE is:       sinh2x cos y  =  c # 
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[Exercise]   x y dx + ( x2 + y2 + 1 ) dy  =  0 

[Exercise] ( y2 + x y + 1 ) dx  +  ( x2 + x y + 1 ) dy  =  0 

[Question] Is the integrating factor of a given ODE 
unique?   NO! 

2 0

Q
1     2

x

Q

1x

2

Q

1x

ydx xdy

P

y

P

y

Q x

P

y

P y

 

 
 

 

 


 
 

 


 
 
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7 Linear Differential Equations  

7.1 Definitions 

Linear Differential Equations 

An nth–order differential equation is linear if it can be written in 
the form 

 
dny

dxn  + an1(x) 
dn1y

dxn1  + ... + a1(x) 
dy
dx  + ao(x) y = f(x) 

Hence, a first-order linear equation has the form 

 
dy
dx  + p(x) y  =  r(x) 

e.g., y'  y = e2x 1st– order linear 

 y'  
  y  

x   =   
5

  2   x
2y3 1st–order nonlinear 

 y'' + a(x) y' + b(x) y  =  f(x)  2nd–order linear 
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Homogeneous Differential Equations 

If the function f(x) = 0 [or r(x) = 0], then the above 
linear differential equation is said to be homogeneous; 
otherwise, it is said to be nonhomogeneous. 

e.g. y'  y  =  0 homogeneous 

 y'  y  =  e2x nonhomogeneous 

 

 

 



1
st
-Order ODE - 48 

 

7.2 Solution of the First-Order Linear Differential 
Equations 

 

Homogeneous Equation 

The solution of the linear homogeneous equation 

 y' + p(x) y  =  0 

can be obtained by separation of variables 

 
dy
y   =  p(x) dx 

or y(x)  =  c e– 

 

 
 p(x) dx  
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Nonhomogeneous Equations 

 

The nonhomogeneous equation 

 y' + p(x) y  =  r(x)  

can be written in the following form 

 [p(x) y  r(x)] dx + dy  =  0 

which is of the form 

 P(x) dx + Q(x) dy = 0 

with P(x) = p(x) y  r(x)   

Q(x) = 1 

Since 
P(x)

y
   = p(x)    0 =  

Q

x
  

the above equation is not exact differential.   
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However, 

 

  








 
 P 

y
  

 Q 

x
   

 Q    = p(x) 

we have the integrating factor 

  
 P x dx

F x e  

for the differential equation.  Multiply the differential 
equation by the integrating factor, we have 

[y' + p(x) y] e

 

 

 p(x) dx  = 
( ) ( )

( )
p x dx p x dx

y e yp x e    r(x) e

 

 

 p(x) dx   
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According to chain rule, the left side of the above equation is the 

derivative of ye
 

 

 p(x) dx  , i.e.,  
d

dx 










 y e
 

 

 p(x) dx   = r(x) e
 

 

 p(x) dx   

Integrating both sides of the above equation wrt x, we have 

y e
 

 

 p(x) dx  = 






 

 

 r(x) e
 

 

 p(x) dx dx)  + c   

or y  = e- 



 

 

  p(x) dx    













 






 

 

 r(x) e
 

 

 p(x) dx dx  + c    
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Alternative Solution Procedure：   

 

i. Rearrange the equation in the standard form:  

y' + p(x) y = r(x) 

ii. Derive the integrating factor: e

 

 

 p(x) dx   

iii. Multiply both sides of the given equation by this 
factor 

iv. Integrate both sides of the resulting equation.   
Note that the integral of the left is always just y 
times the integrating factor. 

v. Solve the integrated equation for y. 
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[Example] y' = y + x2 , y(0)  =  1 

 y'  y  =  x2  y' + p(x) y  =  r(x) 

thus, the integrating factor is:  e
 

 

 p(x) dx  = e
 

 

 - 1 dx  = e– x 

Multiply both sides of the differential equation according to the 
alternative procedure, we have 

 e– x (y'  y)  =  x2 e– x          or ( y e– x)'  =  x2 e– x 

Integrating both sides, we have:   

y e–x  =  

 

 

 x2 e–x dx  + c  =  c  ( x2 + 2 x + 2 ) e–x 

Thus, y = c ex  (x2 + 2 x + 2)   general solution 

 

Since    y(0)  =  1  c  =  3    ∴ y  =  3 ex  ( x2 + 2 x + 2 )

 particular solution  
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The general solution can also be obtained by the general 
formula 

y = e- 



 

 

  p(x) dx   















 





 

 

 r(x) e

 

 

 p(x) dx dx  + c    

= ex 











 


 

 

 x2 e–x dx + c   = c ex  (x2 + 2x + 2) 
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[Example] 
dy
dx  = x3  2 x y y(1)  =  1 

[Solution] y' + 2 xy = x3   y' + p(x) y = r(x) 

 The integrating factor is:  e


 

 

 p(x) dx
   = e



 

 

 2x dx
   = ex2  

ex2 ( y' + 2 x y )  = x3 ex2      or     ( ex2 y)'  =  x3 ex2 

 ex2 y  =  


 

 x3 ex2 dx  + c 

∴  y  =  ex2 











 


 

 

 x3 ex2 dx + c            (integration by parts) 

2 2
2

- -1
 

2

x x x
e e c

  
   

  
 = 

x2  1
 2    + c e

-x2
  

Since y(1)  =  1
11 1

2
ce

  ,  c  =  e .  Thus, y  =  
x2  1

 2 
  + e

1-x2
 
 # 
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Bernoulli's Equations 

The equation 

 
dy
dx   + p(x) y  =  g(x) ya ( a is any real number ) 

which is known as the Bernoulli's Equation, can be reduced to linear form 
by a suitable change of the dependent variables.  For a = 0 and a = 1, the 
equation is linear, and otherwise, it is nonlinear.  Set 

 u(x)  =  y1-a 

then u' (x) =  ( 1 a ) y–a y' 

so if we multiply both sides of the differential equation by (1a) y–a, we 
obtain 

 (1a) y–a y' + (1a) p(x) y1-a = (1a) g(x) 

or u' + (1a) p(x) u  =  (1a) g(x) 

The equation is now linear and may be solved as before. 
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[Example] y'  
 y 
x   =  

 5 
2  x2y3 

[Solution]    Compare the above equation with y' + p(x) y = g(x) ya 

we have a  =  3     ∴ Set  u(x) = y1-a = y–2       u'(x)  =  – 2 y–3 y' 

Multiply both sides of the equation by  2 y–3, we obtain 

 2 y–3 y' + 
  1  
x  2 y–2 = 5 x2    or    u' + 

  2  
x  u  =  5 x2  (which is a first 

order linear ODE). 

The integrating factor is then:    e




 

 
 2 
x  dx

  = x2 

multiply both sides of the differential equation of u by x2, we have 

 x2 u' + 2 x u  =  5 x4           or (x2 u)'  =  5 x4 

 x2 u  =  x5 + c  or x2 y–2  =  x5 + c   y =  ( x3 + c x–2 ) –1/2
 # 
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[Exercise]   Show that the differential equation 

 y' + p(x) y  =  f(x) y ln y 

can be made linear if we set u  =  ln y 

 

 

Riccati’s Equation 

     2y g x y h x y k x     

 
 Except in special instances, the solution cannot be given in closed 

form 
 If one particular solution is known, then the remaining solutions 

can be explicitly derived. 
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Riccati’s Equation 

 

Consider two distinct solutions 

   y x x   (given) 

Let 

     u x y x x   

 

       

 

2 2

2 2

2

0

since 2 2

Bernoulli's Equation: 2 0

u gu h y

y y y y y u u

u g h u hu



      



    

         

    
 

   

       
 

1 2 1 2

2 2

Let          

2  1st-order linear ODE: 2

1

v u u v u u

u u u g h u h v g h v h

y x x u x x
v x

 

 

  

 

     

        

    
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 21 1 2
[Example]        and     1y y y x

x x x
    

 

 
 

 
 

 

 

 
 

2

2

2

3

3

3 3 3 3 3 2 2

3 3

3

3

3

1 1
1    and   

1 1 1 1 1 2 3 1
1 1       

Integrating Factor   

3 1
3

1 1

3 3

1 1 2
1 1

1

3

dx
x

y x y x v x
v x v x

v v v
v x v x v x x x

e x

x v x v x x v x v x v x
x x

c
x v x c v

x

k x
y x

cv x k x

x

     

   
              

   




        

       


     


 

3
      where 3k c
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[Exercise]  2 1
2 2   and   y xy y x

x
      

Thus, we have        
 

1 1
2 ,  1,  2,  g x x h x k x y x

x v x
         

   

 

 

   

2 2 2

2

2 2

2 2 2

2

2
2

2ln

2 2 2

2 2

2

1 2
2   2 2 1 1  2 1

  

1 1
2

2

x x xx dx
x xx

x x
x x x

x

v g h v h v x v v x v
x x

e d e e
F x e e v

x dx x x

e e
v dx c e e dx c e eE x c

x x x x

v x x x e E x



 
 

 



    
                     

    

 
       

 

   
              

   

 

 

 
 

2

2

2

2

1 1
                  

2

x

x

cx e

y x
x x c E x x e





 
 

   
   
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8      Applications of First-Order Differential Equations - Modeling 

[Example 1] 

A tank is initially filled with 100 gal of salt solution containing 0.5 lb of salt per gallon.  
Fresh brine containing 3 lb of salt per gallon runs into the tank at the rate of 2 gal/min, and the 
mixture, assumed to be kept uniform by stirring, runs out at the same rate.  Find the amount of 
salt in the tank at any time t. 

Let Q lb be the total amount of salt in solution in the tank at any time t, and let dQ be the 
increase in this amount during the infinitesimal interval of time dt.  At any time t, the amount of 
salt per gallon of solution is therefore Q/100 (lb/gal).  The material balance of salt in the tank is 









Rate of Accum.
of Salt

in the Tank
  = 









Rate of Salt
Flow

into the Tank
  – 









Rate of Salt
Flow

out of the Tank
  

The rate at which salt enters the tank is 

 2 gal/min  3 lb/gal = 6 lb/min 

Likewise, since the concentration of slat in the mixture as it leaves the tank is the same,  as the 
concentration Q/100 in the tank itself, the rate of salt leaves the tank is 

 2 gal/min  
Q

100  lb/gal = 
Q
50   lb/min 

Hence, the rate of accumulation of salt in the tank dQ/dt is  

 
dQ
dt    = 6  

Q
50    
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This equation can be written in the form 

 
dQ

300  Q
   = 

dt
50  

and solved as a separable equation, or it can be written 

 
dQ
dt    + 

Q
50   = 6 

and treated as a linear equation.  

Considering it as a linear equation, we must first compute the integrating factor e 

 

 

 p(x) dt   =   

e




 

 

 
1
50 dt

   = et/50 

Multiplying the differential equation by this factor gives 

 et/50 








 
dQ
dt   + 

Q
50   = 6 et/50 

From this, by integration, we obtain 

 Q et/50 = 300 et/50 + c 
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or Q  =  300 + c e–t/50 

Substituting the initial conditions t  =  0, Q  =  50, we find c  =   250 

Hence,  Q = 300  250 e–t/50 #
 

 

[Example 2] 

A tank is initially filled with 100 gal of salt solution containing 0.5 lb of salt per gallon.  
Fresh brine containing 1 lb of salt per gallon runs into the tank at the rate of 3 gal/min, and the 
mixture, assumed to be kept uniform by stirring, runs out at the 2 gal/min.  Find the amount of 
salt in the tank at any time t. 

In this case, the rate at which salt enters the tank is 

 3 gal/min  1 lb/gal  =  3 lb/min 

Since the amount of brine in the tank increases with time (at 1 gal/min), the concentration of salt 
in the tank is then 

 
Q

 100 + t   lb/gal 

Therefore, the rate of salt leaves the tank is 

 2 gal/min  
Q

 100 + t   lb/gal =  
2 Q

 100 + t    lb/min 

From the mass balance of salt of the system, we have 
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dQ
dt     = 3  

 2Q 
100 + t  

or 
dQ
dt    +  

2 Q
 100 + t     = 3 

The integrating factor in this case is 

 e

 

 

 p(x) dt   =   e




 

 

 
2

100 + t dt

   = (100 + t )2 

So that, we have 

 [ ( 100 + t )2 Q ]'  =  3 ( 100 + t )2 

or Q(t)  =  ( 100 + t ) + c ( 100 + t )–2 

Setting t = 0, we find that c  =  – 50(100)2, so that 

 Q(t)  =  100 + t  50 








 1 + 
 t

 100  

 –2

  # 
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9 Approximate Solutions 
 

9.1 Method of Direction Fields  Graphic Method  

 

Slope of a Curve 

y

x

F(x,y,c) = 0

slope =
dx

dy

x0,y0

= f(x0,y0)

x0

y0

 

 y'  =  f(x,y)   y  =  g(x ; c)   

   or F(x,y,c)  =  0 
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[Example] y' = –1  y = –x + c or x + y = c 

y

x

slope = -1

 

 

 

 

[Example] y' =  
 2y 

x    y = c x2 
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Orthogonal Trajectories 

The curves of a family C is said to be orthogonal trajectories of the curves of a family K, and vice 
versa, if at every intersection of a curve of C with a curve of K, the two curves are perpendicular. 

y

x
x

0

y
0

y' = f(x,y)             F(x,y,C) = 0

y ' = -  
f(x,y )

1
G(x,y,K) = 0
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[Example] y' = –1  y = –x + C or x + y =  C 

 y' = 1   y  =  x + K or y  x  =  K 

y

x

slope = -1

slope = 1

 

The two families of curves, x + y = C & y  x = K, are orthogonal trajectories of each other. 
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[Example] y' =  
  2 y  

 x    

 y = C x2 ( the Solid Lines in the following Figure ) 

 

Orthogonal trajectories:  (the Dashed Lines in the above Figure) 

 y'  =  – 
 1 

 
 2 y 

x  
   =  

 x 
2 y   

  x2  
2   + y2  =  K 
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Method of Direction Fields  for y' = f(x,y) 

Step 1 Plot the isoclines (curves of constant slope) of y' = f(x,y), i.e., plot the curves for 

  f(x,y)  =  k  =  constant 

Step 2 Draw a number of parallel short line segments (lineal elements) with slope k 
along each isocline f(x,y)  =  k 

Step 3 Connect the lineal elements to get the approximate solution curves. 

[Example] y' = x y        or 
 dy 

y   =   x dx 

 ln y   =   
1

  2   x
2 + c             or y   =   c'  e

x2/2
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9.2 Picard's Iteration Method  Successive Approximations  

 

Iteration Method :   

 

Assume we need to solve the (positive) value of x of the algebraic equation: 

 x2 + x  =  1 

or, alternatively 

 x =   1 - x   

Since the above equation is nonlinear, we propose to solve the value of x by iteration if we 
assume that the initial guess of x be 0.5, i.e., 

 xo =  0.5  

then the 1st approximation of x, x(1), can be calculated by 

 x(1)  =   1 - xo    =   1 - 0.5    =  0.707 

Similarly, the 2nd approximation of x, x(2), is then 

 x(2)  =   1 - x(1)    =   1 - 0.707    =  0.541 
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By the same token, the (n+1)th approximation of x can be solved by 

 x(n+1)  =   1 - x(n)     

where x(n) is the nth approximation of x.  We then obtain, successively, that 

    ... x(5)  =  0.657  ... x()  =  0.618   

Similarly, consider the initial value problem 

 y'  =  f(x, y) ; y(x0)  =  y0 

Integrate both sides of the differential equation from x0 to x with respect to x yields 

 

x0

x

 y' dx  = 

x0

x

 f(x,y(x)) dx  

or y(x)  =  y(x0) + 
x0

x

 f(t,y(t)) dt  

Since the function y(t) in the integrand is not known a priori, the integral of the right-hand-side of 
the above equation can not evaluated unless the approximations of y(t) are introduced.  We now 
define a sequence of functions {yn(x)}, called Picard iterations, by the successive formulas 

 y0(x) = y0 

 y1(x) = y0 + 

x0

x

 f(t,y0(t)) dt  
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 y2(x) = y0 + 

x0

x

 f(t,y1(t)) dt  

 y3(x) = y0 + 

x0

x

 f(t,y2(t)) dt  

 . 
 . 

 yn(x)  =  y0 + 

x0

x

 f(t,yn1(t)) dt  

Remarks: Picard's method is of great theoretical values in connection with Picard's existence 
and uniqueness theorem.  Its practical value is limited because it involves 
integrations that may be complicated. 

 

[Example] Consider the initial value problem 

 y'(x)  =  y ; y(0)  =  1 

In this case,  f(x,y)  =  y(x) 

 y0(x) = y0 = 1 

 y1(x) = y0 + 

x0

x

 f(t,y0(t)) dt  = 1 + 

0

x

 (1) dt  = 1 + x 
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 y2(x) =y0 + 

x0

x

 f(t,y1(t)) dt  = 1 + 

0

x

 (1 + t) dt   

  = 1 + x + 
x2

 2   

 y3(x) = y0 + 

x0

x

 f(t,y2(t)) dt   

 = 1 + 




0

x

 (1 + t + 
t2

 2 ) dt  = 1 + x + 
x2

 2!   + 
x3

 3!   

Finally, we will have  

 yn(x)  =  1 + x + 
x2

 2!   + ... + 
xn

 n!   = 
k=0

n

 
xk

 k!   

Hence, lim
n

  yn(x) = lim
n

   
k=0

n

 
xk

 k!   

which converges to the exact solution ex.   
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10 Existence and Uniqueness of IVP Solutions 

 

[Examples] 

 (i) |y'| + |y| = 0, y(0)  =  0 Trivial solution, y  0; 

     y(0)  =  1  No solution exists. 

 (ii) y'  =  x, y(0)  =  1  unique solution,  y  =  x2/2 + 1. 

 (iii) x y'  =  y  1, y(0)  =  1  

 infinitely many solutions,  y  =  1 + c x. 

 

Questions:   Is there a solution to the problem?    

Is the solution unique? 
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ExistenceUniqueness Theorem:  

If f and 
 f 

y
 are continuous and bounded in a rectangle R given by a < x < b, c < y < d that contains 

the point (x0,y0) (see the following figure),  

then, in an interval x0 – h < x < x0 + h contained in a < x < b, there is a unique solution y  =  y(x) of 
the initial value problem 

 
dy
dx  = f(x,y) ; y(x0)  =  y0 

The local solution

y

x
a b

c

d

x
0

x
0

+ hx
0

- h

 

Note that the above theorem is valid for a small region around the initial point, we call such a 

theorem a local existenceuniqueness theorem. 
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[Example]  Check the initial value problem 

 
dy
dx   = x2 + y3  y(0)  =  1 

Since f(x,y)  =  x2 + y3 and 
f

y
   = 3 y2 are continuous everywhere, they are 

continuous in any rectangle R containing the initial point (0,1).  Hence, a 
unique local solution exists. 

[Example]  Check the initial value problem 

 
dy
dx   = x y1/3 y(0)  =  0 

Since 
f

y
   = 

x

 3 y2/3 
    is not bounded at the initial point (0,0), the above 

theorem does not apply to this problem.  Indeed, the problem has two 
solutions 

 y  0 and y  =  
x3

 3 3 
  

[Exercise]   Is the solution y =  x2/4 to the differential equation y'  =  y  with the 
initial condition y(0)  =  0 unique? 
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11 Review Questions and Problems of Chapter 1 

(I) Solve the following Differential Equations: 

1. y' + 2 x y = - 6 x  

2. y dx - dy = x2 y2 dx + x dy 

3.  (x2 + y2) y' + (2xy + 1) = 0, y(2) = -2 

4. 2 x y' = 10 x3 y5 + y 

5 y'  =  








 
 2x + y - 1 

x - 2  

2

  

6 ( 4xy + 6y2 ) + ( 2x2 + 6xy ) y'  =  0 

7 x2y'  - 3xy  =  - 2y5/3 

8 ( 4y3 - x ) 
dy
 dx    =  y 

9 x y' - 2 y  =  x ex 

10 2 x y y'  +  ( x - 1 ) y2  =  x2 ex 

11 y'   =   x e-x3

  -  3 x2 y with  y(0)  =  -1 

12 ( x2 + y2 + 1 ) y'  + x y  =  0 

13 ( y + tan ( x + y ) ) y'  +  y  =  0 

14 x2 y'  =  y2  +  5 x y  + 4 x2 

15 ( 3 x ey + 2 y ) dx  +  ( x2 ey + x ) dy  =  0 
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16 ( x + y - 2 ) y'  + ( x - y )  =  0 

17 (1 + x2) dy + x y dx =  1+x2   dx 

18 (2x + 3y - 5) y' + (x + 2y - 3) = 0 

19 y'   =   
y ex 

 ex + ( y + 1 ) ey 
  

20 y'   =   
 2 x ex - y2 

 2 y    with y(0)  =  2  

21 y'   =   
 x - y2 

 y   

II. Under what conditions is the following differential equation exact? 

(c x2y ey + 2 cos y ) + (x3 ey y + x3 ey + k x sin y ) y' = 0 

Solve the exact equation.  

III. Apply Picard's iteration method to the following initial value problems. 

 (i) y' - x y = 1, ; y(0) = 1 

 (ii) y'  =   x y ; y(0)  =  1 

IV Find the orthogonal trajectories of the circles. 

  x2 + ( y - c )2  =  1 + c2 
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Summary 
1. Separation of Variables  

 g(y) dy  =  f(x) dx 

 

 

 g(y)  dy  =  

 

 

 f(x)  dx + c 

(a) y'  =  f(ax + by) where a and b are constants 

Let u  =  ax + by 

 
du
dx   =  a + b 

dy
dx   =  a + b f(u) 

 




 

 

 
du

  a + b f(u)      =    dx  + c 

(b) y'  =  f(y/x) 

Let  y/x  =  u or y  =  x u 

(c) y'  =  f 








 
 Ax + By + C 

ax + by + c    
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2. Exact Differential Equations 

 M(x,y) dx + N(x,y) dy  =  0 

Check    
 M 

y
  =  

 N 

x
     

Find u such that 

 
u

x
   =  M(x,y)  

u

y
   =  N(x,y) 

Then the general solution is 

 u(x,y)  =  c 

Integrating Factor: 

(a) If 

  








 
 P 

y
  

 Q 

x
   

 Q     =  f(x),  then ef(x)dx is an integrating factor. 

(b) If   

   








 
 P 

y
  

 Q 

x
   

 P     =  f(y),  then e– f(y)dy is an integrating factor. 

(iii) If   

   








 
 P 

y
    

 Q 

x
    

Q  P
   =  f(x+y)  =  f(v), then ef(v)dv is an integrating factor. 
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(iv) If   

   








 
 P 

y
    

 Q 

x
    

Q y  P x
   =  f(xy)  =  f(v), then ef(v)dv is an integrating factor. 

 

3. Linear Differential Equations 

 
  dy  

dx   + p(x) y  =  r(x) 

Solution Procedure： 

i. Write the equation in the standard form: y' + p(x) y  =  r(x) 

ii. Compute the integrating factor e
 

 

 p(x) dx   

iii. Multiply both sides of the given equation by this factor 
iv. Integrate both sides of the resulting equation.   Note that the integral of the left is 

always just y times the integrating factor. 
v. Solve the integrated equation for y. 

 

Bernoulli's Equations 

 
dy
dx   + p(x) y  =  g(x) ya ( a  0 or 1 ) 

Set 

 u(x)  =  y1-a     u' + ( 1 a ) p(x) u  =  ( 1 a ) g(x) 


